Фактическая толщина стенки трубы

Геометрические размеры труб определяются следующими характеристиками:

  • — внешний диаметр;
  • — толщина стенки;
  • — соотношение внешнего и внутреннего диаметров;
  • — длина.

Сортамент труб (доступные размеры, технические условия производства и применения стальных труб) нормируются государственными стандартами ГОСТами). ГОСТы разрабатываются с учетом технологии изготовления труб и используемых в производстве сталей.

На рынке СНГ принято указывать размеры труб в мм (миллиметрах), но можно также встретить размеры труб в дюймах. Последние чаще всего указываются для труб импортного производства. Длина трубного проката измеряется в метрах.

Диаметр стальных труб

Диаметр стальной трубы определяется по:

  • — внешнему диаметру для электросварных и бесшовных труб;
  • — диаметру условного прохода для ВГП-труб.

Фактическая толщина стенки трубы Фактическая толщина стенки трубы

  • Диаметр условного прохода (Ду или Dу) — внутренний диаметр труб.
  • Условный проход — условная величина, представляющая собой значение фактического внутреннего диатрема, округленного до ближайшего из стандартного ряда, и служит точкой отсчета для подбора размеров  остальных деталей и оборудования. Его значение стандартизированного  согласно ГОСТ 28338-89. Измеряется в дюймах или мм.
  • Внутренний диаметр — фактическая величина параметра, получаемая непосредственным измерением, как правило, указывается в мм;
  • Наружный диаметр труб (Дн или Dн) — фактический диаметр трубы с учетом толщины стенки, указывается в мм;.
  • Диаметр резьбы (G).

Размеры труб указываются в миллимерах, но для трубы ВГП часто обозначают в дюймах («).

Таблица соответствия диаметров труб в мм и дюймах

Условный проход трубы (Dy), мм Диаметр резьбы (G), дюйм Наружный диаметр трубы (Dн), мм
Труба стальная водогазопроводная Труба стальная бесшовная Полимерная
10 3/8″ 17 16 16
15 1/2″ 21,3 20 20
20 3/4″ 26,8 26 25
25 1″ 33,5 32 32
32 1 1/4″ 42,3 42 40
40 1 1/2″ 48 45 50
50 2″ 60 57 63
65 2 1/2″ 75,5 76 75
80 3″ 88,5 89 90
90 3 1/2″ 101,3 102 110
100 4″ 114 108 125
125 5″ 140 133 140
150 6″ 165 159 160

Размеры ВГП-труб по ГОСТ 3262-75

Основные размеры ВГП-трубы: 15 мм (1/2″ дюйма); 20 мм (3/4″); 25 мм (1″); 32 мм (1 1/4″ дюйм с четвертью); 40 мм (1 1/2″); 50 мм (2″).

Существуют также следующие Ду: 10 мм, 65 мм, 80 мм, 90 мм, 100 мм и даже 125 мм — но они используются редко и, как правило, заменяются другими видами стальных труб (например, электросварной).

Наиболее часто для стояков применяются трубы 3/4″, для внутренней разводки 1/2″.

Размеры электросварных труб по ГОСТ 10704-91

Прямошовные электросварные трубы бывают следующих наружных диаметров (в миллиметрах): 10; 12; 13; 14; 16; 17; 17,5; 18; 19; 20; 21,3; 22; 24; 25; 26; 28; 30; 32; 33; 33,7; 36; 38; 40; 42; 43; 45; 48; 51.

При диаметре до 57 мм используется ВГП труба соответствующего размера. Наиболее популярны прямошовные трубы по ГОСТ 10704-91 размером от 57 мм и выше.

Их основные диаметры: 57; 60; 63,5; 76; 89; 102; 108; 114; 127; 133; 140; 146; 159; 168; 178; 193; 219; 245; 273; 325; 377; 426; 530.

Размеры сварных труб для газо- и нефтепроводов по ГОСТ 20295-85

Начинаются с диаметра 159 мм и до 530 мм идут с такими же размерами, как и трубы по ГОСТ 10704-91. Основные более крупные диаметры (в миллиметрах): 630, 720, 820, 1020,1220, 1420.

Размер горячекатанных бесшовных труб по ГОСТ 8732-78

Часто используемые диаметры бесшовных горячедеформированных труб (мм): 32; 38; 42; 45; 51; 54; 57; 60; 63,5; 68; 70; 73; 76; 83; 89; 95; 102; 108; 114; 121; 127; 133; 140; 146; 152; 159; 168; 180; 194; 203; 219; 245; 273; 325; 351; 426.

Заводы производители могут изготавливать любые размеры труб по требованию заказчика.

Внутренние диаметры труб

Согласно стандартному ряду, принятому в большинстве стран, трубы имеют следующие внутренний диаметр, измеряемый в мм: 6, 10, 15, 20, 25, 32, 40, 50, 65, 80, 100, 125, 200 и т.д.

При монтаже системы из стальных труб для жилых зданий обычно используют трубы с размером внутреннего диаметра Dу = 15, 20 и 32 мм.

Наружные диаметры труб и толщина стенки труб

Наружный диаметр, Dн мм Толщина стенки, мм
Трубы стальные водогазопроводные ГОСТ 3262-75
15 2,8
20 2,8
25 3,2
32 3,2
40 3,5
50 3,5
Трубы стальные электросварные ГОСТ 10704-91, ГОСТ 10705-80
57 3,5
76 3,5
89 3,5 4,0
102 3,5 4,0
108 3,5 4,0
114 4,0 4,5
133 4,0 4,5
159 4,5 5,0 6,0
Условный проход Наружный диаметр Толщина стенки труб
легких обыкновенных усиленных
6 10,2 1,8 2,0 2,5
8 13,5 2,0 2,2 2,8
10 17,0 2,0 2,2 2,8
15 21,3 2,35
15 21,3 2,5 2,8 3,2
20 26,8 2,35
20 26,8 2,5 2,8 3,2
25 33,5 2,8 3,2 4,0
32 42,3 2,8 3,2 4,0
40 48,0 3,0 3,5 4,0
50 60,0 3,0 3,5 4,5
65 75,5 3,2 4,0 4,5
80 88,5 3,5 4,0 4,5
90 101,3 3,5 4,0 4,5
100 114,0 4,0 4,5 5,0
125 140,0 4,0 4,5 5,5
150 165,0 4,0 4,5 5,5

На сайте StalnyeTruby.BY вы можете купить металлические трубы в Минске оптом и в розницу.

Новый подход к оценке технического состояния трубопроводов тепловых сетей

Материалы Конференции «Тепловые сети. Современные решения»17 по 19 мая 2005 г. НП «Российское теплоснабжение»

Самойлов Е.В. к.т.н., научный руководитель работ по диагностике ЗАО НПК «Вектор»

В данной статье изложены новый метод инженерной диагностики трубопроводов тепловых сетей и подход к оценке технического состояния с учетом выявленного характера распределения напряжений.

Указанный метод более шести лет используется предприятиями эксплуатации тепловых сетей г. Москвы и Московской области. В настоящее время продиагностировано более 6500 участков, общей протяженностью более 4000 п.км. 18 организаций в различных городах Российской Федерации и Республики Беларусь владеют технологией в полном объеме и осуществляют этот вид работ самостоятельно.

Диагностика и критерии «ветхого» состояния труб.

Трубопроводы тепловых сетей являются важным элементом теплоснабжения городов и промышленных объектов. Для обеспечения безаварийной эксплуатации Организации тепловых сетей должны иметь достоверную и удобную для понимания и использования информацию о фактическом техническом состоянии труб, на основании которой следует своевременно осуществлять замену «ветхих» участков.

Параметрами оценки «ветхого» состояния труб являются:

  • Статистика аварий за минувшие 2-3и года;
  • Время эксплуатации трубопровода;
  • Обследование трубопровода в местах контрольных шурфовок.

Статистика аварий и прогноз образования течей являются основными факторами для принятия решения о замене труб (перекладка) или возможности дальнейшей эксплуатации. Когда время эксплуатации трубопровода приближается к проектному сроку, возникает вопрос о допустимости дальнейшей, сверхнормативной его эксплуатации.

Для определения фактического технического состояния трубопровода, нормативными документами предусмотрено проведение обследования труб в местах контрольных шурфовок.

Для этого используются различные методы диагностики, перед рассмотрением которых следует указать на локальный характер этого подхода – уровень повреждения трубы в месте шурфа считается аналогичным для всей длины трубопровода на участке.

В точках вскрытия теплотрассы осуществляются:

  • Визуальный контроль, который дает информацию о состоянии теплоизоляции, антикоррозионного покрытия, качественно об уровне и характере коррозионных поврежденй наружной поверхности трубы.
  • Инструментальный контроль толщины стенки трубы (ультрозвуковая толщинометрия) – информация для оценки «ветхого» состоянии на основании критериев нормативных документов.
  • В местах шурфовок из материала трубы вырезаются образцы для проведения дефектоскопического анализа. В местах вырезки также визуально оценивается уровень и тип внутренней коррозии.

Основным параметром, по которому определяется «ветхость» трубы является фактическая, остаточная толщина стенки трубы. Так, в частности, «Правила технической эксплуатации тепловых энергоустановок» 2003 [1] года гласят: «Участки с утонением стенки трубопровода на 20% и более подлежат замене». Однако:

  1. Такой подход не учитывает изменение условий финансирования, вследствие чего объем «ветхих» трубопроводов, требующих перекладки, из года в год возрастает.

  2. В силу локальности проведенных обследований, если осуществить полное, 100% обследование действующих трубопроводов, то он значительно возрастет.

  3. Нет возможности осуществить ранжирование участков по фактору опасности образования течи, с тем, чтобы в первую очередь переложить самые «ветхие».

  4. Из-за локальности подхода, не редко при устранении действительно «ветхого» интервала, из эксплуатации выводятся трубы с утонением менее 10% от проектной толщины, допускающей дальнейшую эксплуатацию в течение весьма длительного периода (см. фото 1.)

  5. Данный критерий не объясняет и, следовательно, не позволяет использовать тот, не редко встречаемый случай, когда трубы с утонением стенки трубы более 50% не только не имеют аварий в отопительный период, но и выдерживают температурные и гидравлические испытания.

Читайте также:  Раструбный способ сварки полипропиленовых труб

Фактическая толщина стенки трубы

Таким образом в настоящее время существует насущная потребность в использовании дополнительного параметра, позволяющего более детально, научно обосновано оценить степень «ветхости» трубы. В РД 522 [2] сказано: «Участки трубопровода, на которых при измерительном контроле выявлены уменьшения первоначальной (расчетной) толщины стенки трубопровода на 20% и более, подлежат замене.

Для принятия решения о замене лицо, ответственное за исправное состояние и безопасную эксплуатацию трубопровода, должно выполнить поверочный расчет на прочность того участка трубопровода, где обнаружено утонение стенки».

Именно уровень напряжений в конкретных местах обуславливает опасность разрушения – образования течи, или наоборот возможность безаварийной эксплуатации трубопровода.

Профессор, доктор технических наук А.А. Дубов, осуществив анализ существующих методов неразрушающего контроля указывает на низкую их эффективность при оценке ресурса промышленного оборудования и на необходимость перехода от традиционной дефектоскопии к Технической диагностике [3].

Последняя в первую очередь включает расчет или замеры фактических напряжений в конструкции, в нашем случае – в металле трубы теплосети.

Для представления, что нового, по сравнению с критерием остаточной толщины стенки трубы, дает подход основанный на анализе напряжений, осуществим этап расчета на прочность трубопровода – оценка.

В трубах горячего водоснабжения возникают напряжения за счет действуя трех нагрузок:

  • Внутреннее давление;
  • Действие веса трубы, изоляции, воды в трубе;
  • Нагрузки от температуры.

Согласно принципу суперпозиции, действие от каждой нагрузки рассматривается отдельно. Затем результаты суммируются.

Фактическая толщина стенки трубы

От действия внутреннего давления на стенках трубы возникают растягивающие напряжения, равномерно распределенные по длине и окружности. Для того, что бы труба выдержала только внутреннее давление, необходимо иметь толщину стенки tд (см. рис.1а) равномерную по сечению.

От действия весовой нагрузки расчет проводится в первую очередь по величине изгибающего момента, эпюра которого приведена на рис.1б. Видно, что наиболее нагруженными являются элементы трубы в точках скользящих опор и посередине пролета.

Характер распределения напряжений в сечении для точек над скользящими опорами дан на рис.1б. Характерно то, что по верхней образующей (12 часов) действуют растягивающие напряжения, по нижней (6 часов)– сжимающие. В силу этого допускается неравномерная толщина стенки трубы по сечению :

  • По верхней образующей – tиз 1 ;
  • По нижней образующей – tиз 2 , причем tиз 2 < tиз 1, т.к. по низу действуют сжимающие напряжения (расчет по касательным напряжениям);
  • В середине (3 часа) – напряжений от изгибающего момента нет и толщина стенки может быть нулевой . Сложим результаты при оценке воздействия внутреннего давления и весовой нагрузки
  • (рис.1с):
  • По верхней образующей (12 часов) толщина стенки должна быть tд + tиз1, что бы выдержать суммарные растягивающие напряжения;
  • По середине (3 часа) – только tд;
  • По нижней образующей (6 часов) tд — tиз 2 < tд (компенсация растягивающих напряжений от внутреннего давления сжимающими от веса).

Проведенная оценка напряжений и толщины стенки трубы от действия рассмотренных двух силовых факторов, позволяет сделать следующий вывод:

  1. наличие тонкой стенки трубы не означает наличие аварийной ситуации;

  2. наличие толстой стенки трубы не означает отсутствие аварийной ситуации;

  3. аварийную ситуацию можно определить только из анализа характера распределения напряжений по длине трубопровода и сечению трубы.

Учет напряжений от воздействия температуры усиливает данный вывод. В частности, при нагревании труба удлиняется, чему препятствуют мертвые опоры и углы поворота, это приводит к возникновению сжимающих напряжений, которые «гасят» растягивающие.

Условия разрушения стенки трубы и образования течи определяются не только остаточной толщиной, но и профилем дефекта. В работе С.Б.

Киченко [4] приводятся результаты расчета допустимой остаточной толщины стенки трубы газопровода в месте дефекта в зависимости от линейного размера последнего (использован стандарт «Бритиш Газ» ASME).

Показано, что для отдельных локальных дефектов допускается эксплуатация трубопровода с толщиной стенки до 60% от первоначальной, а для язв диаметром до 3t (t- исходная толщина стенки трубы) — и до 10%!

Таким образом, приведенная оценка минимальной толщины стенки трубы поясняет ранее отмеченный случай наличия рабочего ресурса у трубопровода с утонением стенки трубы на уровне 50% от проектной.

При осуществлении расчета на прочность на основании РД 522 [2] необходимо учитывать, что будут использованы проектные параметры конструктивных элементов. Но процессу коррозии подвержен металл не только трубы, но конструктивных элементов: сальниковых комп

Cтраницы: 1 | 2 | 3 | читать дальше>>

Большая Энциклопедия Нефти и Газа

Cтраница 1

Фактическая толщина стенки, задаваемая в рабочих чертежах, больше расчетной.

Это вызывается тем, что стенки подвергаются коррозии под действием рабочей среды и атмосферы, уменьшающей толщину стенки и ослабляющей ее.

Поэтому расчетная толщина стенки увеличивается за счет специальной прибавки на коррозию, выбираемой исходя из условий эксплуатации крана.

РљСЂРѕРјРµ того, полученная толщина стенки должна быть округлена РґРѕ целого значения.  [1]

  • Фактическая толщина стенки s /, полученная непосредственными измерениями толщины готовой детали РїСЂРё операционном Рё ( или) эксплуатационном контроле, должна быть РЅРµ менее допустимой толщины стенки.  [2]
  • Фактическая толщина стенки SK получается непосредственным измерением толщины стенки готовой детали РїСЂРё контроле после изготовления или РІ процессе эксплуатации, РѕРЅР° должна быть РЅРµ менее допускаемой толщины стенки.  [3]
  • Фактическая толщина стенки СЃРѕСЃСѓРґР° равна 14 РјРј.  [4]
  • Фактическая толщина стенок вытяжки РЅРµ равна РёСЃС…РѕРґРЅРѕР№ S Рё может быть приближенно определена РїРѕ кривым фиг.  [5]
  • Допустимая фактическая толщина стенки должна проверяться СЃ помощью специальных жестких предельных СЃРєРѕР± или штангенциркуля РІ 3 — 4 — С… местах, равномерно расположенных РїРѕ окружности каждого торца.  [6]
  • Фактическая толщина стенок вытяжки РЅРµ равна РёСЃС…РѕРґРЅРѕР№ S Рё может быть приближенно определена РїРѕ кривым фиг.  [7]

Фактическую толщину стенки принимают как наименьшую РёР· результатов четырех измерений толщины РїРѕ концам РґРІСѓС… взаимно перпендикулярных диаметров РІ РѕРґРЅРѕРј сечении. Число проверяемых сечений должно быть РЅРµ менее РѕРґРЅРѕРіРѕ РЅР° 2 Рј барабана или камеры, РЅРѕ РЅРµ менее трех РІ РѕРґРЅРѕРј изделии. Следует отметить, что толщина стенки барабанов, изготавливаемых РёР· листа, колеблется РІ значительно более СѓР·РєРёС… пределах, чем толщина стенки труб для камер.  [8]

Фактическая толщина стенки трубы Рљ выбору номинальной толщины стенки.  [9]

Фактическую толщину стенки 5С„ принимают равной наименьшему РёР· четырех значений толщины, измеренных РїРѕ РґРІСѓРј взаимно перпендикулярным диаметрам РІ РѕРґРЅРѕРј сечении РїСЂРё числе повторяемых сечений РЅРµ менее РѕРґРЅРѕРіРѕ РЅР° каждые 2 Рј длины РїСЂСЏРјРѕР№ трубы, РЅРѕ РЅРµ менее трех сечений для всей трубы. Для гнутых труб 5С„ принимают РїРѕ наименьшему РїРѕ крайней мере РёР· трех измерений, выполненных РїРѕ наружной стороне РіРёР±Р°.  [10]

  1. Фактическую толщину стенок труб определяют толщиномерами, позволяющими измерять толщину РІ интервале 0 2 — 50 0 РјРј СЃ точностью РґРѕ 0 1 РјРј РїСЂРё температуре окружающего РІРѕР·РґСѓС…Р° РѕС‚ РјРёРЅСѓСЃ 10РґРѕ40 РЎ.  [11]
  2. Фактическую толщину стенок труб определяют толщиномерами, позволяющими измерять толщину РІ интервале 0 2 — 50 0 РјРј СЃ точностью РґРѕ 0 1 РјРј РїСЂРё температуре окружающего РІРѕР·РґСѓС…Р° РѕС‚ РјРёРЅСѓСЃ 10 РґРѕ 40 РЎ.  [12]
  3. Если фактическая толщина стенки трубы РІ месте стыка контролируется РґРѕ Рё после сварки, то Рє толщине стенки SK рекомендуется прибавить 0 8 РјРј.  [13]

Значение фактической толщины стенки, не подвергшейся износу, может быть принято равным номинальной толщине, указанной в паспорте, за вычетом прибавки С.

Если РІ результате РєРѕСЂСЂРѕР·РёРё или РїРѕ РґСЂСѓРіРёРј причинам произошло местное утонение стенки барабана или камеры, то значение толщины стенки, РІРІРѕРґРёРјРѕРµ РІ расчет, должно РІ каждом отдельном случае устанавливаться РІ зависимости РѕС‚ характера, расположения Рё размеров участка, подвергшегося РёР·РЅРѕСЃСѓ. Р’ случае необходимости эти РІРѕРїСЂРѕСЃС‹ решает специализированная организация.  [14]

Определение фактической толщины стенки труб производится толщино-мерами, позволяющими измфять толщину РІ интфвале РћР” — 50 0 РјРј СЃ точностью 0 1 РјРј РїСЂРё темпфатуреокружающего воздухаот-100 РґРѕ 40 РЎ.  [15]

Читайте также:  Участки в садоводстве трубниково

Страницы:      1    2    3

Толщина стенки стальной трубы

►Классификация труб по толщине стенки
►Таблица толщины стенок стальных труб
►Расчет толщины стальных труб

К основным параметрам трубного проката относят толщину стенки, наружный и внутренний диаметры.

Стенки трубопроводов испытывают внутренние нагрузки. Воздействие таких факторов как скорость движения потока в сочетании температурой, расчетным коррозионным износом закладывается при проектировании.

При подземной прокладке учитывают воздействие толщи и сезонные подвижки грунта.

В зависимости от металлоемкости стальные трубы бывают облегченные, обыкновенные и усиленные.

По другой классификации: тонкостенные и толстостенные. Формула Барлоу описывает какое давление может выдержать цилиндрический сосуд в зависимости от прочности. Вычисления выглядят следующим образом:

P=2St/D

  • P – давление;
  • S – пределы прочности конкретного сплава;
  • t – толщина
  • D – наружный диаметр.

Фактическая толщина стенки трубы

Внешние нагрузки, учитывая протяженность трубопроводов, оказывают значительное воздействие на конструкцию в целом. При надземной прокладке это снег, дождь, ветер. При подземной: горизонтальное и вертикальное давление грунтов. Нормативы устанавливают в каждом географическом районе. Одновременно учитывают показатели материалов гидро- и теплоизоляции.

Коррозийный износ прогнозируют на основе наблюдений. В расчетах применяют данные: начальная толщина элемента трубопровода, ее изменения и интервал времени. Вычислив скорость разрушения за год можно определить необходимые характеристики, исходя из регламентированного срока службы инженерной сети. От расхода металла зависит общий вес конструкций, безопасность опор и креплений.

Классификация труб по толщине стенки

Толстостенность определяют по соотношению стенки к наружному диаметру. В ГОСТ 8734-75 «Трубы стальные бесшовные холоднодеформированные» приведены категории:

  • Особотонкостенные – до 0,5 мм;
  • Тонкостенные – до 1,5 мм;
  • Толстостенные – отношение диаметра к величине стенки имеет значение 6-12,6;
  • Особотолстостенные – коэффициент менее 6.

Холоднокатаные и холоднотянутые трубы производят без предварительного нагрева стали. Показатели прочности достигаются за счет циклов рекристаллизации и приобретения однородной кристаллической решетки.

Горячекатаные

Горячекатаный прокат изготавливают из раскаленных заготовок. При данном способе производства невозможно получить легкую тонкостенную продукцию.

Толщина стенок изделий от 2,5 мм до 75 мм.

При прокатывании через валки структура сплава уплотняется, но сохраняет пластичность. При воздействии внутренних и внешних факторов трубопровод способен частично поглощать и распределять напряжения по всей длине. При транспортировке теплоносителей и горячих сред снижаются теплопотери.

Электросварные

Параметры электросварных труб зависят от характеристик листа или штрипса. Величину подбирают из значений 0,8 – 32 мм. Эти изделия не предназначены для предельных механических и динамических нагрузок, но легко справляются с широким рядом технических задач.

ВГП

Трубы ВГП – отдельная категория электросварного проката. Они предназначены для обустройства коммунальных инженерных систем, соответствуют нормативным нагрузкам и проходят ряд специальных испытаний. Для определения толстостенности предусмотрено три категории:

  • Легкие;
  • Обыкновенные;
  • Усиленные.

В нормативы закладывают допуски на разностенность для нескольких классов точности. При расчете проекта вычисляют показатели максимально-возможного давления во время аварий и номинального. Существуют специальные программы подбора.

Таблицы толщины стенок стальных труб

Толщина стенки стальной трубы является регламентированной величиной, так как от нее зависит прочность и долговечность трубопроводной системы. В регламентах ГОСТ показатель соотносят со сплавом и диаметром изделия.

Величины приведены в стандартах для каждого вида трубного проката:

Бесшовные трубы

Наружный диаметр, мм Толщина стенки, мм Наружный диаметр, мм Толщина стенки, мм
32 3,5 108 6
60 6 108 10
60 8 114 5
63 4 133 5
68 8 133 6
73 9 140 5
76 5 159 5
76 6 159 6
89 8 159 8
102 5 168 6
102 8 168 14
102 10 219 8
108 4 219 10
108 4,5 219 12
108 5 219 20
114 8 245 8
121 5 273 7
127 12 273 10
133 4 325 8

ВГП трубы

Условный проход Наружный диаметр Толщина стенки труб Масса 1м труб, кг
Лёгких Обыкновен. Усиленных Лёгких Обыкновен. Усиленных
6 10,2 1,8 2,0 2,5 0,37 0,40 0,47
8 13,5 2,0 2,2 2,8 0,57 0,61 0,74
10 17,0 2,0 2,2 2,8 0,74 0,80 0,98
15 21,3 2,35 1,10
15 21,3 2,5 2,8 3,2 1,16 1,28 1,43
20 26,8 2,35 1,42
20 26,8 2,5 2,8 3,2 1,5 1,66 1,86
25 33,5 2,8 3,2 4,0 2,12 2,39 2,91
32 42,3 2,8 3,2 4,0 2,73 3,09 3,78
40 48,0 3,0 3,5 4,0 3,33 3,84 4,34
50 60,0 3,0 3,5 4,5 4,22 4,88 6,16
65 75,5 3,2 4,0 4,5 5,71 7,05 7,88
80 88,5 3,5 4,0 4,5 7,34 8,34 9,32
90 101,3 3,5 4,0 4,5 8,44 9,60 10,74
100 114,0 4,0 4,5 5,0 10,85 12,15 13,44
125 140,0 4,0 4,5 5,5 13,42 15,04 18,24
150 165,0 4,0 4,5 5,5 15,88 17,81 21,63

Электросварные трубы

Наружный диаметр, мм Толщина стенки, мм Наружный диаметр, мм Толщина стенки, мм
16 1,5 89 3,5
18 1,5 89 4
20 1,5 102 4
25 1,5 108 3,5
26 2 108 4
32 1,5 114 4
32 2 127 4
40 1,5 133 4
42 3 133 5
45 1,5 159 4
45 2 159 4,5
48 1,5 159 5
48 2 159 6
51 3 219 5
57 2,5 219 6
57 3 219 8
57 3,5 273 8
76 3 426 10
76 3,5 1020 12
89 3

Расчет толщины стальных труб

Определение параметров толщины стенки труб отопления выполняют по разным методикам.

Например, РД 10-249-98 «Нормы расчета стационарных котлов и трубопроводов горячей воды и пара» основана на вводе значений давления и температуры.

Калькуляторы рекомендуют применение того или иного сплава автоматически: до 350 Со – Ст .20. Затем к вычислениям добавляют допуск на разностенность и поправки на коррозионный износ.

Расчет ресурса действующих стальных трубопроводов по остаточной толщине стенки

Главная / Техническая информация / Технические статьи / Проектирование трубопроводных сетей / Расчет ресурса действующих стальных трубопроводов по остаточной толщине стенки

Вопросы расчета остаточного ресурса действующих стальных трубопроводов созвучны с определением исходной толщины стенки трубопровода.

Актуальность подобных задач не подлежит сомнению для большинства коммунальных объектов в городах России, где в системах водоснабжения традиционно применяются стальные трубопроводы. Например, при протяженности трубопроводов городской водопроводной сети Москвы более 11 тыс.

км около 72% трубопроводов представлены стальными трубами, 26% — чугунными и лишь 2% — железобетонными, полиэтиленовыми и поливинилхлоридными трубами. При нормативном сроке службы стальных трубопроводов 20 лет средний возраст стальных трубопроводов московского водопровода составляет 24 года, чугунных — 41 год.

Сложившаяся ситуация приводит к росту отказов трубопроводной сети. Анализ причин отказов трубопроводов показывает, что наиболее часто встречающимися повреждениями на стальных трубах являются свищи, которые вызваны воздействием внешней и внутренней коррозии труб.

Наибольшее количество аварий (примерно 90%) приходится на трубопроводы водопроводной сети малых диаметров (100-300 мм) по причине относительно малой толщины стенки труб.

В качестве мероприятий, содействующих продлению срока службы старых стальных трубопроводов, прежде всего, необходимо рассматривать их бестраншейный ремонт различными методами.

Однако прежде чем осуществлять ремонтно-восстановительные работы и выбирать наиболее эффективный вариант реновации трубопроводов проектировщики должны выявить их остаточный ресурс, во многом зависящий от физического состояния участка сети на момент принятия решения о реновации.

Под остаточным ресурсом (остаточным сроком службы) понимается наработка трубопровода от момента его диагностирования до достижения предельного состояния.

Остаточный ресурс следует отличать от времени последующей диагностики технического состояния.

Остаточный ресурс как случайная величина характеризуется численными параметром наработки и вероятности того, что в течение этой наработки предельное состояние не будет достигнуто.

Для определения остаточного ресурса необходимо знать:

  • определяющие техническое состояние объекта параметры, изменение которых может привести к предельному состоянию (например, остаточную толщину стенки трубопровода);
  • величину следующих параметров на момент диагностирования: внутренней коррозии, происходящей за счет изменения качественных показателей транспортируемой воды, негативно воздействующей на внутренние стенки трубопровода; наружной почвенной коррозии, в том числе в местах нарушения сплошности антикоррозионного покрытия; коррозионной активности грунтов, окружающих трубопровод;
  • скорость изменения перечисленных выше параметров в течение дальнейшего диагностирования и эксплуатации трубопроводной сети.

Математически техническое состояние объекта, для которого производится расчет остаточного ресурса, может быть описано с помощью линейных, степенных, логарифмических или экспоненциальных зависимостей. Например, для определения остаточного ресурса объекта при воздействии общей коррозии наиболее приемлема экспоненциальная модель.

Читайте также:  Труба стальная в армавире

Для стальных городских водопроводных и напорных водоотводящих сетей наиболее приемлемой оценкой состояния является уменьшение толщины (утонение) стенки в результате общей (фронтальной) и язвенной (питинговой) коррозии, а также эрозионного износа стенок трубопровода транспортируемой жидкостью до величины, ниже которой не обеспечивается запас прочности.

Сущность проблемы оценки остаточного ресурса трубопровода во времени в зависимости от толщины стенки состоит в комплексном анализе изменения толщины стенки и влияния на участок трубопровода внешних обстоятельств, нагрузок и воздействий, связанных, в частности, с местом расположения трубопровода по отношению к транспортной инфраструктуре, глубиной его залегания, наличием подземных вод по трассе, характеристикой грунта, сроками эксплуатации отдельных участков сети и т. д., а также в сопоставлении величин:

  • расчетной требуемой толщины стенки трубопровода dрасч.тр
  • проектной толщины стенки dпрoeкт (согласно ГОСТ на соответствующий диаметр трубы и марку стали);
  • остаточной толщины стенки dост (как результата проявления коррозионных процессов на внутренней и внешней поверхностях трубопровода во времени).

Расчетная минимальная толщина стенки принимается на основании упрощенного метода или комплексного прочностного расчета с использованием данных по диаметрам трубопроводов и окружающей обстановке, а проектная толщина стенки определяется как толщина стенки трубы заводского изготовления, выполненной в соответствии с ТУ. Остаточная толщина стенки соответствует ее толщине после n-го количества лет эксплуатации участка трубопровода. Она определяется по результатам регулярной диагностики (толщинометрии) или специальных натурных диагностических исследований, назначаемых в экстренных ситуациях.

При определении ресурса трубопровода используются следующие расчетные зависимости:

  • для определения средней скорости коррозии V, мм/год

V=(dпроект -dост) / N [год],

где N — срок эксплуатации трубопровода до момента определения толщины стенки, год; dпроект — проектная толщина стенки, мм;

  • для определения остаточного ресурса Nост, год
  • Nост =(dост — dост*) / К [ год],
  • где dост — остаточная толщины стенки, мм; dост* — остаточная толщина стенки, при которой не соблюдаются установленные граничные условия по первому предельному состоянию (допустимым растягивающим напряжениям в лотке) или по второму предельному состоянию (допустимым деформациям в своде).
  • От величины остаточного ресурса трубопровода напрямую зависит метод его реновации.

Если трубопровод имеет достаточно большой остаточный ресурс (как правило, более 10 лет), то в качестве метода его восстановления может рассматриваться нанесение набрызговых защитных покрытий (цементно-песчаного или полимерного). Эти покрытия будут обеспечивать герметичность трубной конструкции, но не повысят ее несущую способность.

В случае, если трубопровод имеет значительные свищевые повреждения и величина его остаточного ресурса значительно менее 10 лет, наиболее приемлемым методом бестраншейного ремонта может являться протягивание в трубопровод полимерной трубы или наложение сплошного внутреннего защитного покрытия из полимерных материалов, что будет обеспечивать повышение несущей способности двухслойной трубной конструкции.

Расчет остаточного ресурса участка действующего ветхого стального трубопровода по толщине стенки и скорости коррозии осуществляется с помощью автоматизированной программы, первое диалоговое окно которой представлено на рисунке ниже.

Диалоговое окно

Фактическая толщина стенки трубы

Примечания:

  • в случае отсутствия информации по (высота грунтовых вод над лотком трубы) необходимо предварительное проведение инженерно-геологических изысканий (например, шурфования), а при невозможности их организации следует принять величину залегания вод равной глубине залегания трубопровода, что увеличит запас прочности;
  • объемный вес грунта определяется по типу превалирующего грунта вдоль трассы трубопровода (для песка — 1,5 т/м3; суглинка — 1,7; глины — 1,9; скальных пород — 2,1 т/м3);
  • при отсутствии сведений них необходимо проставить нули (в данном случае расчет по язвенной коррозии производиться не будет).

Работа с программным комплексом начинается с нажатия кнопки Исходные данные и ввода требуемой исходной информации, рисунок выше.

После введения исходных данных нажимают кнопку Ok и на экране дисплея снова появляется первое диалоговое окно. При нажатии на соответствующие кнопки на экране появляются результаты прочностного расчета по предельным состояниям и информация об остаточной толщине стенки, которая обеспечивает («ресурс не исчерпан») или не обеспечивает («ресурс исчерпан») несущую способность трубы.

В качестве исходных данных входной информации (рисунок выше) представляются следующие сведения:

  • внешний диаметр участка трубопровода, м;
  • глубина залегания трубопровода (от поверхности земли до лотка), м;
  • высота грунтовых вод над лотком трубы, м;
  • внутреннее давление воды в трубопроводе, м вод. ст. или т/м2;
  • проектная (начальная) толщина стенки трубопровода, мм;
  • остаточная толщина стенки трубопровода (по данным диагностики), мм;
  • продолжительность эксплуатации трубопровода до диагностики, лет;
  • объемный вес материала трубы, т/м3;
  • объемный вес грунта, т/м3;
  • объемный вес транспортируемой воды, т/м3;
  • глубина дефекта в зоне максимальных повреждений, мм;
  • наибольший размер (диаметр) коррозионной язвы по верхней кромке дефекта, мм;
  • фактическое время с момента появления дефекта (по данным диагностики), лет.

В качестве справочных данных входной информации вводятся следующие сведения:

  • предел текучести стали, МПа;
  • модуль упругости стали, т/м2;
  • модуль деформации грунтового массива, т/м2;
  • коэффициент Пуассона для стали;
  • коэффициент Пуассона для грунта;
  • продольные предельные наклоны земной поверхности;
  • продольные деформации земной поверхности.

Выходная информация представляется в виде трех форм:

  • форма 1 — результаты расчета остаточного ресурса при воздействии общей коррозии;
  • форма 2 — результаты расчета остаточного ресурса при воздействии питтинговой (язвенной) коррозии;
  • форма 3 — определение остаточного ресурса.
  1. Форма 1 (воздействие общей коррозии)
  2. При составлении формы 1 используются результаты расчета по первому предельному состоянию (прочности в лотке) —А, второму предельному состоянию (деформациям в своде) — Б и проверке на устойчивость с учетом пластических деформаций — В.
  3. А. Расчет по первому предельному состоянию предусматривает определение:
  • растягивающих напряжений от собственного веса трубы, МПа;
  • сжимающих напряжений от грунтовых вод, МПа;
  • растягивающих напряжений от внутреннего давления воды, МПа;
  • контактных напряжений от горного давления с учетом колесных нагрузок, МПа;
  • суммарных значений контактных и растягивающих напряжений (∑σ0), МПа.

Для детального анализа динамики изменения величин напряжений выходная информация также должна включать сведения о следующих промежуточных параметрах расчета:

  • контактных напряжениях, т/м2: Q1, А1, S1
  • приведенном объемном весе, т/м3;
  • нагрузках на контуре горной выработки, т/м2 :P0, P2

По результатам расчетов по первому предельному состоянию делаются соответствующие выводы:

  • остаточная толщина стенки обеспечивает несущую способность трубы (∑σ0 0,75 σm для стали, т. е. 270 МПа) — ресурс исчерпан.

Если ресурс трубопровода исчерпан, то в выходной форме 2 делается общий вывод: ресурс трубопровода исчерпан — требуется его замена.

В случае, если ресурс не исчерпан, производится расчет остаточного ресурса с выводом на принтер следующей информации:

  • критическая глубина дефекта при действующих напряжениях, мм;
  • скорость роста дефекта в плоскости трубы, мм/год;
  • средняя скорость общей коррозии, мм/ год;
  • суммарная скорость коррозии, мм/год;
  • остаточный ресурс при питтинговой (язвенной) коррозии, год.

Форма 3 (определение остаточного ресурса)

Распечатки по форме 3 должны содержать обобщающие выводы по остаточному ресурсу участка трубопровода. Результирующая информация отражает величину остаточного ресурса трубопровода при общей (фронтальной) и язвенной (питтинговой) коррозии. На основании сравнения полученных величин автоматически выбирается наименьшее значение, которое рассматривается как остаточный ресурс:

  • ресурс трубопровода при общей (фронтальной) коррозии, год;
  • ресурс трубопровода при язвенной (питтинговой) коррозии, год;
  • наименьший ресурс участка трубопровода, год.

В таблице ниже представлена примерная распечатка результатов автоматизированного расчета.

Распечатка результатов по форме №3

Форма № 3
Определение остаточного ресурса
Ресурс трубопровода при общей (фронтальной) коррозии = 0,00 лет
Ресурс трубопровода при язвенной (питтинговой) коррозии = 2,64 года
Наименьший ресурс трубопровода = 0,00 лет

Полученные данные являются базовыми для принятия решения о дальнейшей эксплуатации действующего трубопровода.

На практике при исследовании состояния участков сети объекты с нулевым остаточным ресурсом рассматриваются как первоочередные для восстановления (реконструкции), а с ненулевым — как потенциальные для ремонтно-восстановительных работ в отдаленной перспективе.

В рассматриваемом примере стальной трубопровод должен подлежать замене или реновации, например, путем предварительного разрушения и протаскивания на место старого трубопровода (с помощью бестраншейной технологии) полимерной трубы идентичного диаметра.

Другой бестраншейной технологией может служить протаскивание полимерной трубы меньшего диаметра в старую без ее разрушения или, как альтернатива, нанесение на внутреннюю поверхность старого трубопровода полимерного рукава (чулка) с соответствующей толщиной стенки.

После полимеризации плотно прилегающего к стенке рукава старого трубопровода образуется самостоятельная двухслойная несущая конструкция, противодействующая всем нагрузкам на восстановленный трубопровод.

Ссылка на основную публикацию
Adblock
detector