Течение жидкости в трубе разного сечения



Движение жидкостей или газов представляет собой сложное явление. Для его описания используются различные упрощающие предположения (модели). В простейшей модели жидкость (или даже газ) предполагается несжимаемыми и идеальными (т. е. без внутреннего трения между движущимися слоями). При движении идеальной жидкости не происходит превращения механической энергии во внутреннюю, поэтому выполняется закон сохранения механической энергии. Следствием этого закона для стационарного потока идеальной и несжимаемой жидкости является уравнение Бернулли, сформулированное в 1738 г. Стационарным принято называть такой поток жидкости, в котором не образуются вихри. В стационарном потоке частицы жидкости перемещаются по неизменным во времени траекториям, которые называются линиями тока. Опыт показывает, что стационарные потоки возникают только при достаточно малых скоростях движения жидкости.

Рассмотрим стационарное движение идеальной несжимаемой жидкости по трубе переменного сечения (рис. 1.22.1). Различные части трубы могут находиться на разных высотах.

Течение жидкости в трубе разного сечения
Рисунок 1.22.1.Течение идеальной жидкости по трубе переменного сечения. ΔV1 = l1S1; ΔV2 = l2S2. Условие несжимаемости: ΔV1 = ΔV2 = ΔV

За промежуток времени Δt жидкость в трубе сечением S1 переместится на l1 = υ1Δt, а в трубе сечением S2 – на l2 = υ2Δt, где υ1 и υ2 – скорости частиц жидкости в трубах. Условие несжимаемости записывается в виде:

ΔV = l1S1 = l2S2 или υ1S1 = υ1S1.

Здесь ΔV – объем жидкости, протекшей через сечения S1 и S2.

Таким образом, при переходе жидкости с участка трубы с большим сечением на участок с меньшим сечением скорость течения возрастает, т. е. жидкость движется с ускорением. Следовательно, на жидкость действует сила. В горизонтальной трубе эта сила может возникнуть только из-за разности давлений в широком и узком участках трубы.

Давление в широком участке трубы должно быть больше чем в узком участке. Если участки трубы расположены на разной высоте, то ускорение жидкости вызывается совместным действием силы тяжести и силы давления. Сила давления – это упругая сила сжатия жидкости.

Несжимаемость жидкости означает лишь то, что появление упругих сил происходит при пренебрежимо малом изменении объема любой части жидкости.

Так как жидкость предполагается идеальной, то она течет по трубе без трения. Поэтому к ее течению можно применить закон сохранения механической энергии.

При перемещении жидкости силы давления совершают работу:

ΔA = p1S1l1 – p2S2l2 = p1S1υ1Δt – p2S2υ2Δt = (p1 – p2)ΔV.

Работа ΔA сил давления равна изменению потенциальной энергии упругой деформации жидкости, взятому с обратным знаком.

Изменения, произошедшие за время Δt в выделенной части жидкости, заключенной между сечениями S1 и S2 в начальный момент времени, при стационарном течении сводятся к перемещению массы жидкости Δm = ρΔV (ρ – плотность жидкости) из одной части трубы сечением S1 в другую часть сечением S2 (заштрихованные объемы на рис. 1.22.1).

Закон сохранения механической энергии для этой массы имеет вид:

E2 – E1 = ΔA = (p1 – p2)ΔV,

где E1 и E2 – полные механические энергии массы Δm в поле тяготения:

Течение жидкости в трубе разного сечения

Отсюда следует:

Течение жидкости в трубе разного сечения

Это и есть уравнение Бернулли. Из него следует, что сумма

Течение жидкости в трубе разного сечения

остается неизменной вдоль всей трубы. В частности, для горизонтально расположенной трубы (h1 = h2) уравнение Бернулли принимает вид:

Течение жидкости в трубе разного сечения

Величина p – статическое давление в жидкости. Оно может быть измерено с помощью манометра, перемещающегося вместе с жидкостью. Практически давление в разных сечениях трубы измеряется с помощью манометрических трубок, вставленных через боковые стенки в поток жидкости, так чтобы нижние концы трубок были параллельны скоростям частиц жидкости (рис. 1.22.2). Из уравнения Бернулли следует:

Давление в жидкости, текущей по горизонтальной трубе переменного сечения, больше в тех сечениях потока, в которых скорость ее движения меньше, и наоборот, давление меньше в тех сечениях, в которых скорость больше.

Течение жидкости в трубе разного сечения
Рисунок 1.22.2.Измерение давления в потоке жидкости с помощью манометров. υ1  h3
Модель. Течение идеальной жидкости

Если сечение потока жидкости достаточно велико, то уравнение Бернулли следует применять к линиям тока, т. е. линиям, вдоль которых перемещаются частицы жидкости при стационарном течении.

Например, при истечении идеальной несжимаемой жидкости из отверстия в боковой стенке или дне широкого сосуда линии тока начинаются вблизи свободной поверхности жидкости и проходят через отверстие (рис.

 1.22.3).

Рисунок 1.22.3.Истечение жидкости из широкого сосуда

Поскольку скорость жидкости вблизи поверхности в широком сосуде пренебрежимо мала, то уравнение Бернулли принимает вид: где p0 – атмосферное давление, h – перепад высоты вдоль линии тока. Таким образом,

Это выражение для скорости истечения называют формулой Торричелли. Скорость истечения идеальной жидкости из отверстия в сосуде такая же, как и при свободном падении тела с высоты h без начальной скорости.

В отличие от жидкостей, газы могут сильно изменять свой объем. Расчеты показывают, что сжимаемостью газов можно пренебречь, если наибольшие скорости в потоке малы по сравнению со скоростью звука в этом газе. Таким образом, уравнение Бернулли можно применять к достаточно широкому классу задач аэродинамики.

Одной из таких задач является изучение сил, действующих на крыло самолета. Строгое теоретическое решение этой задачи чрезвычайно сложно, и обычно для исследования сил применяются экспериментальные методы. Уравнение Бернулли позволяет дать лишь качественное объяснение возникновению подъемной силы крыла. На рис. 1.22.

4 изображены линии тока воздуха при обтекании крыла самолета. Из-за специального профиля крыла и наличия угла атаки, т. е. угла наклона крыла по отношению к набегающему потоку воздуха, скорость воздушного потока над крылом оказывается больше, чем под крылом. Поэтому на рис. 1.22.4 линии тока над крылом располагаются ближе друг к другу, чем под крылом.

Из уравнения Бернулли следует, что давление в нижней части крыла будет больше, чем в верхней; в результате появляется сила действующая на крыло. Вертикальная составляющая этой силы называется подъемной силой.

Подъемная сила позволяет скомпенсировать силу тяжести, действующую на самолет, и тем самым она обеспечивает возможность полета тяжелых летательных аппаратов в воздухе. Горизонтальная составляющая представляет собой силу сопротивления среды.

Рисунок 1.22.4.Линии тока при обтекании крыла самолета и возникновение подъемной силы. α – угол атаки

Теория подъемной силы крыла самолета была создана Н. Е. Жуковским. Он показал, что при обтекании крыла существенную роль играют силы вязкого трения в поверхностном слое.

В результате их действия возникает круговое движение (циркуляция) воздуха вокруг крыла (зеленые стрелки на рис. 1.22.4).

В верхней части крыла скорость циркулирующего воздуха складывается со скоростью набегающего потока, в нижней части эти скорости направлены в противоположные стороны. Это и приводит к возникновению разности давлений и появлению подъемной силы.

Циркуляция воздуха, обусловленная силами вязкого трения, возникает и вокруг вращающегося тела (например, цилиндра). При вращении цилиндр увлекает прилегающие слои воздуха, вызывая его циркуляцию.

Если такой цилиндр установить в набегающем потоке воздуха, то возникнет сила бокового давления, аналогичная подъемной силе крыла самолета. Это явление называется эффектом Магнуса. Рис. 1.22.5 иллюстрирует обтекание вращающегося цилиндра набегающим потоком.

Эффект Магнуса проявляется, например, при полете закрученного мяча при игре в теннис или футбол.

Рисунок 1.22.5.Обтекание вращающегося цилиндра набегающим потоком воздуха

Итак, во многих явлениях аэродинамики существенную роль играют силы вязкого трения. Они приводят к возникновению циркулирующих потоков воздуха вокруг крыла самолета или вокруг вращающегося тела, к появлению силы сопротивления среды и т. д. Уравнение Бернулли не учитывает сил трения.

Его вывод основан на законе сохранения механической энергии при течении жидкости или газа. Поэтому с помощью уравнения Бернулли нельзя дать исчерпывающего объяснения явлений, в которых проявляются силы трения.

В этих случаях можно руководствоваться только качественными соображениями – чем больше скорость, тем меньше давление в потоке газа.

Особенно заметно проявляются силы вязкого трения при течении жидкостей. У некоторых жидкостей вязкость настолько велика, что применение уравнение Бернулли может привести к качественно неверным результатам.

Например, при истечении вязкой жидкости через отверстие в стенке сосуда ее скорость может быть в десятки раз меньше рассчитанной по формуле Торричелли. При движении сферического тела в идеальной жидкости оно не должно испытывать лобового сопротивления.

Если же такое тело движется в вязкой жидкости, то возникает сила сопротивления, модуль которой пропорционален скорости υ и радиусу сферы r (закон Стокса)

Коэффициент пропорциональности в этой формуле зависит от свойств жидкости.

Поэтому, если тяжелый шарик бросить в высокий сосуд, наполненный вязкой жидкостью (например, глицерином), то через некоторое время скорость шарика достигнет установившегося значения, которое не будет изменяться при дальнейшем движении шарика. При движении с установившейся скоростью силы, действующие на шарик (сила тяжести выталкивающая сила и сила сопротивления среды ), оказываются скомпенсированными, и их равнодействующая равна нулю.

 

Лучшие школы, лагеря, ВУЗы за рубежом

Движение жидкостей (и газов) по трубам

Движение жидкости по трубам широко распространено в природе и технике. Например, течение рек, течение нефти по нефтепроводу, течение крови по кровеносным сосудам человека и животных и т. д.

Читайте также:  Цилиндры полуцилиндры изоляции трубопроводов

Продувая струю воздуха между двумя шариками или листами плотной бумаги, подвешенными на нитях, можно наблюдать их взаимное притяжение. Похожее явление возникает при движении больших судов в узком канале, где суда значительно уменьшают сечение потока жидкости.

По всей видимости, давление внутри движущейся жидкости или газа уменьшается по сравнению с давлением окружающей среды.

Выясним зависимость давления жидкости от скорости её течения в трубе. Воспользуемся для этого законом сохранения механической энергии.

Рассмотрим движение идеальной жидкости в наклонном участке трубопровода, находящегося в поле земного тяготения.

Выделим мысленно некоторый элемент жидкости. Жидкость, находясь в движении, обладает кинетической энергией. Если она поднимается или опускается, то изменяется её потенциальная энергия.

Согласно закону сохранения энергии работа, совершенная над рассматриваемым элементом жидкости внешними силами, которые поддерживают движение жидкости или газа, должна быть равна изменению его полной механической энергии: A = ΔEk + ΔEp.

Пусть за небольшой промежуток времени жидкость перемещается вверх и вправо. (S1, S2 – поперечные сечения трубы слева и справа).

  • Левый участок жидкости перемещается на расстояние Δx1, за то же время правый – на Δx2.
  • Если жидкость несжимаема, объём слева равен объёму справа: ΔV1 = ΔV2 = ΔV; S1 ∙ Δx1 = S2 ∙ Δx2.
  • Массу перенесенной жидкости выделенного элемента можно определить, зная плотность жидкости и её объём: m = ρ ∙ V.
  • Изменение кинетической энергии выделенного элемента жидкости равно разности кинетических энергий рассматриваемых частей:
    Течение жидкости в трубе разного сечения
  • Изменение потенциальной энергии выделенного элемента жидкости равно: ΔEp = m ∙ g ∙ (h2 – h1).
  • Работа, совершаемая над выделенным элементом внешними силами, равна:
    Течение жидкости в трубе разного сечения
  • Приравнивая работу внешних сил к изменению кинетической и потенциальной энергии выделенного участка жидкости, имеем:
    Течение жидкости в трубе разного сечения

Течение жидкости в трубе разного сечения

  1. Это уравнение названо в честь швейцарского математика и механика Даниила Бернулли уравнением Бернулли.
  2. Если жидкость неподвижна, то из уравнения можно получить обычное соотношение между глубиной и давлением: p1 + ρ ∙ g ∙ h1 = p2 + ρ ∙ g ∙ h2.
  3. Если p2 – давление наверху в жидкости, а (h2 – h1) – глубина h, отсчитываемая от поверхности жидкости, то получим: p = p0 + ρ ∙ g ∙ h, где p0 – атмосферное давление.

Течение жидкости в трубе разного сечения

Вывод очевиден: где скорость велика, там мало давление.

Давление жидкости, текущей по трубе, меньше там, где скорость её течения больше, и, наоборот, где скорость течения жидкости меньше, давление там больше.

Можно проверить справедливость уравнения Бернулли на опыте.

Через трубу переменного сечения, в которую впаяны манометрические трубки, пропускают жидкость. По высоте жидкости в манометрических трубках судят о давлении в разных сечениях трубы. На рисунке наименьшее давление – в среднем сечении трубы.

Уравнение Бернулли справедливо не только для жидкостей, но и для газов, если их сжатие мало.

Работа водоструйных насосов, автомобильных карбюраторов, пульверизаторов, водомеров и газомеров основана на уравнении Бернулли.

Самостоятельный гидравлический расчет трубопровода

  • Содержание: [Скрыть]

Постановка задачи

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя.

Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.

Течение жидкости в трубе разного сечения

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – DN;
  • давление номинальное – PN;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.

Течение жидкости в трубе разного сеченияУсловный диаметр (проход) трубопровода (DN) – это условная  безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода.

Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.

Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний,  по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:

Течение жидкости в трубе разного сечения

Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

  • ламинарный поток (Re

Движение жидкостей по трубам

Как следует из уравнения Бернулли, для компенсации потерь энергии (потерь напора) энергия в начале потока должна быть больше, чем в конце.

Источники энергии потока жидкости. Начальную энергию со­здают в форме удельной потенциальной энергии положения (гео­метрического напора) либо удельной потенциальной энергии дав­ления (пьезометрического напора).

Потенциальную энергию положения запасают в напорных ба­ках (рис. 6.8, б), поднимая жидкость в поле сил тяжести на неко­торую высоту , которая и является начальным геометрическим напором.

Если на поверхности жидкости в замкнутом аппарате создать давление газа (рис. 6.8, б), то удельная потенциальная энергия давления также обеспечит движение жидкости в трубо­проводе. Такие аппараты называют монтежю.

Наиболее часто энергию в начале трубопровода создают насо­сом (рис. 6.8, в). Насос — это гидравлическая машина, предназна­ченная для передачи энергии потоку жидкости. Основная доля этой энергии — потенциальная энергия давления и частично — кине­тическая.

Потери напора по длине потока. Когда передвигают книгу по столу, то затрачивают энергию на преодоление силы трения о стол.

При движении жидкости энергия будет затрачиваться на пре­одоление сил трения в жидкости.

Экспериментально доказано, что при движении жидкости на стенке трубы образуется тончай­ший неподвижный слой этой жидкости. Поэтому даже на стенке трубы сохраняется жидкостное трение.

Течение жидкости в трубе разного сечения

Рис. 6.8. Источники энергии, обеспечивающие движение жидкости по трубам: а — напорный бак; б — монтежю; в — насос; — геометрический напор; — давление на поверхности жидкости

Течение жидкости в трубе разного сечения

где — коэффициент трения; l — длина трубы; d — ее диаметр: v2/(2g) — скоростной напор.

Очевидно, что чем больше длина трубы /, тем значительнее затраты энергии (напора) на преодоление трения. И наоборот, с увеличением диаметра трубы d затраты энергии уменьшаются, так как поверхность трения становится относительно меньше.

Влияние шероховатости на величину потерь напора обусловле­но образованием вихрей на выступах неровностей трубы, что тре­бует затрат некоторой доли энергии потока. Различают абсолют­ную и относительную шероховатость.

Читайте также:  Труба стоит в метре от печи

Абсолютная шероховатость (е) — это высота выступов неровно­стей на стенках трубы. Она зависит от материала и способа изго­товления трубы. Значения абсолютной шероховатости приводятся в справочниках.

Относительная шероховатость — это отношение абсолютной шероховатости к диаметру трубы (e/d). При определении коэффи­циента трения обычно используют обратную величину — харак­теристику шероховатости (d/e).

При увеличении шероховатости возрастает число вихрей и по­вышаются потери напора. Например, потери напора в чугунной трубе больше, чем в стеклянной, при прочих равных условиях.

Потери напора на местных сопротивлениях. В трубопроводе ско­рость жидкости может изменяться по величине и направлению из-за наличия поворотов канала, сужений, установки различных регулирующих устройств и т.д.

На таких участках, называемых мест­ными гидравлическими сопротивлениями, вследствие инерции жид­кость отрывается от стенок и образуются вихревые зоны. На фор­мирование вихрей затрачивается часть энергии потока.

Примера­ми местных сопротивлений могут служить внезапное расширение потока и плавный поворот (отвод) трубы, показанные на рис. 6.9. В первом случае изменяется значение скорости, во втором — ее направление.

Рис. 6.9. Примеры местных гид­равлических сопротивлений- I — внезапное расширение потока- I — плавный поворот (отвод) трубы  

Потери напора на отдельном местном сопротивлении оп­ределяют по формуле

где — коэффициент местного сопротивления. Величина зависит от вида местного гидравлического сопротивления (ее значения опубликованы в справочной литературе).

Полные потери напора в трубопроводе. Производственные тру­бопроводы разнообразны как по расположению в пространстве, таки по оснащению их устройствами управления и вспомогатель­ным оборудованием.

Устройства управления служат для регулирования расхода жид­кости или полного перекрытия потока (кран, вентиль, задвиж­ка), ограничения давления в трубопроводе (предохранительный клапан), пропускания жидкости лишь в одном направлении (об­ратный клапан) и других целей.

К вспомогательным устройствам, устанавливаемым на трубопро­водах, относятся очистители жидкости (фильтры), гидроаккуму­ляторы (устройства для погашения гидравлического удара) и др.

Все элементы трубопроводов на гидравлических схемах имеют условные стандартные изображения. Саму трубу изображают сплош­ной линией.

На рис. 6.10 представлен пример схемы простого трубопровода. Его начало помечено цифрой 1, а конец — цифрой 2. Высота подъе­ма жидкости обозначена . Движение жидкости по трубопроводу сопровождается потерями напора одновременно по длине и на местных сопротивлениях. Их суммирование позволяет определить полные потери напора  в трубопроводе. Для приведенной схемы

Рис. 6.10. Пример схемы простого трубопровода: 1,2— соответственно начало и конец трубопровода; , р2 — давления; Т — трубопровод (гидролиния); 3 — задвижка; ОК — обратный клапан; Ф — фильтр; — высота подъема жидкости; — объемный расход жидкости  

 где , — потери напора по длине (на трение); — потери на одном отводе — плавном повороте (всего их два); — на преодоление сопротивления трубопроводной арматуры — задвиж­ки, обратного клапана и фильтра; — потери напора на выходе из трубы в резервуар. Заметим, что место выхода из трубы являет­ся частным случаем внезапного расширения, когда скорость жид­кости падает до нуля (в резервуаре).

Потребный напор. Пьезометрический напор в начале трубопро­вода , необходимый для пропускания по нему жид­кости с заданным расходом, называют потребным напором . Исходя из его значения подбирают марку насоса.

Обеспечение потребного напора (удельной энергии) в трубо­проводе сопряжено с подъемом жидкости на высоту , создани­ем необходимого пьезометрического напора в конце трубопрово­да преодолением общих потерь напора в трубо­проводе. Эти затраты удельной энергии можно представить в сле­дующем виде;

(6.7)

Трубопровод, схема которого приведена на рис. 6.10, называют простым, так как он не имеет ответвлений. Трубопроводы с ответ­влениями называют сложными.

В производственной практике применяют два основных вида сложных трубопроводов: с параллельным соединением труб и слож­ный тупиковый трубопровод.

Пример схемы параллельного соединения труб представлен на рис. 6.11. Здесь общий магистральный поток жидкости с расходом разделяется в точке М на параллельные потоки с расходами в ветвях, равными и . В точ­ке N потоки сливаются. Очевид­но, что расход в магистрали ра­вен сумме расходов в ветвях:

Рис. 6.11. Пример схемы параллель­ного соединения труб: М, N — точки разделения и соедине­ния потока жидкости; , , — расходы жидкости в общем магистраль­ном потоке и ветвях; 3 — задвижка; ОК — обратный клапан
Потери напора в ветвях оди­наковы, так как они представ­ляют собой разность напоров в точках М и N, общих для обеих ветвей:  
Рис. 6.12. Пример схемы сложного тупикового трубопровода: АВ — магистраль; ВС , CD — ветви; — расход жидкости в магистрали; , — расходы жидкости в ветвях; — высота конечных точек ветвей; 3 — задвижка  

Это равенство справедливо, даже если ветви имеют неодина­ковую длину и диаметр, а также разные местные гидравлические сопротивления. При этом значения расходов и устанавли­ваются автоматически.

В сложном тупиковом трубопроводе (рис. 6.12) магистральный поток (участок АВ) разделяется на два потока (ветви ВС и BD). Очевидно, что сумма расходов в ветвях трубопровода равна рас­ходу в магистрали;

При решении практических задач обычно известны расходы в ветвях, напоры в конечных точках ( и HD) и пространствен­ное размещение трубопровода, включая высоты конечных точек ( и ).

Кроме того, известны геометрические параметры (дли­на и диаметр) труб, коэффициенты местных сопротивлений и свойства жидкости (плотность и вязкость). Общая задача, как пра­вило, сводится к определению потребного напора в точке А.

Его значение, а также расход нужно знать для подбора на­соса.

При определении потребного напора весь сложный тру­бопровод разбивают на простые участки (АВ, ВС и BD) и нахо­дят необходимые параметры в отдельных точках схемы, начиная рассмотрение с конечных точек (С и D) и двигаясь навстречу потоку.

На приведенной схеме (см. рис. 6.12) напор в точке В одинаков для простых участков ВС и BD. При разных расходах и иных пара­метрах ветвей расчетные значения потребного напора (см. формулу (6.7)) для ветвей неодинаковы. Для проведения дальней­ших расчетов выбирают наибольшее из полученных значений .

При определении потребного напора в начале магистрали из схемы условно отбрасывают ветви ВС и BD. Далее расчет прово­дят, как для простого трубопровода АВ при известном напоре в конце его, равном .

Для достижения требуемых расходов и 1 ветвях или получения необходимого соотношения этих расходов используют задвижки 3, встроенные в ветви.

Устройства для измерения расхода. На производственных ус­тановках расход жидкости измеряют с помощью сужающих уст­ройств — дроссельных расходомеров. Наиболее простое по конст­рукции и широко распространенное устройство — диафрагма. Схема измерения расхода с помощью диафрагмы приведена на рис. 6.13.

Диафрагма представляет собой диск с отверстием определен­ной формы. Ее зажимают между усреднительными камерами, ко­торые необходимы для повышения точности измерения. К этим камерам подсоединяют дифференциальный манометр для изме­рения разности давлений до и после диафрагмы.

В сечении 1-1, до сужения потока, его скорость равна а давление в этом сечении — . При сужении потока в сечении 2-2 его скорость возрастает до величины .

Другими словами, увеличивается скоростной напор, или удельная кинетическая энергия. Согласно уравнению Бернулли давление в сечении 2-2 становится меньше, чем в сечении 1-1.

Появляется разность дав­лений и соответствующая ей разность уровней жид­кости , измеряемая манометром.

Зависимость разности давлений от расхода жидкости представ­ляют графически в форме градуировочной кривой, прилагаемой к каждой конкретной диафрагме. С помощью такой кривой по показаниям прибора можно определить расход жидкости.

Рис. 6.13. Схема измерения расхода с помощью диафрагмы: 1-1, 2-2 — сечения потока; , и , — соответственно давления в жидко­сти и скорости потоков в указанных сечениях; — разность уровней жидкости в дифференциальном манометре

Гидравлический удар. Явление гидравлического удара возника­ет в трубопроводах при резкой остановке потока жидкости. До сих пор мы пренебрегали ее сжимаемостью, считая, что при измене­нии давления объем жидкости не меняется. Но при гидравличе­ском ударе пренебрегать этим свойством жидкости нельзя.

Как возникает гидравлический удар? Рассмотрим простейшую трубопроводную схему (рис. 6.14). В горизонтальной трубе 2 жид­кость движется под действием постоянного геометрического на­пора го, создаваемого в водонапорной башне 1. При этом давле­ние на входе в трубу также постоянно и равно .На трубо­проводе установлен кран К, с помощью которого можно пере­крыть поток.

При резком закрывании крана внезапно остановится та часть жидкости, которая находится в слое толщиной , прилегающем к крану. Остальная часть жидкости по инерции продолжает дви­жение, сжимая остановившийся слой. При сжатии в слое возрас­тает давление.

Останавливается следующий слой и т.д. Происхо­дит сжатие слоев и повышение давления в направлении от крана ко входу в трубу — распространяется «положительная» волна дав­ления.

Ее скорость соответствует скорости звука — скорости рас­пространения упругих колебаний в данной жидкости.

Наконец, вся жидкость в трубе остановилась. Давление в ней повысилось и стало больше начального значения на входе в трубу. Возникла разность давлений, под действием которой жидкость потекла обратно, начиная со слоя, примыкающего ко входу в трубу.

Читайте также:  Технология сборки трубных узлов

; При оттоке жидкости в трубе понижается давление. Образуется «отрицательная» волна давления, распространяющаяся со скоро­стью звука. Смена давлений в трубе происходит как колебательный процесс с постепенным затуханием до полной остановки жидкости.

Давление, возникающее в трубе при полной остановке пото­ка, определяют по формуле Жуковского

Рис. 6.14. Схема возникновения гидравлического удара в трубе: 1 — водонапорная башня; 2 — труба; К — кран; — геометрический напор; в — скорость потока; — толщина остановившегося слоя жидкости  

где v — начальная скорость потока; с — скорость звука в данной жидкости.

В качестве примера определим давление, возникающее в тру­бе в результате гидравлического удара, если жидкость (вода) имеет плотность р = 1000 кг/м3 и начальную скорость движения v = 2 м/с.

Скорость звука в воде примем равной с = 1500 м/с. Тогда давле­ние составит = 1000 • 2 • 1500 = 3 000 000 Па (3 МПа).

Если предположить, что труба рассчитана на работу при давлении 0,6 МПа, то, естественно, при гидравлическом ударе она будет разрушена.

Как можно предотвратить возникновение гидравлического уда­ра? Одним из способов его предупреждения является установка вместо крана, резко перекрывающего поток, вентиля или задвижки.

Конструктивно они выполнены так, что останавливают поток плав­но, уменьшая скорость жидкости постепенно.

В этом случае может возникнуть лишь так называемый непрямой гидравлический удар с незначительным повышением давления.

Если по требованиям технологии производства или техники безопасности резкая остановка потока жидкости необходима, то на трубопроводе можно установить специальное устройство — гидроаккумулятор (воздушный колпак). При внезапном повыше­нии давления газ в полости гидроаккумулятора сжимается, и жид­кость поступает в эту полость, что предотвращает ее сжатие в трубе.

Движение жидкости по трубам

Гидравлические сопротивления.

При течении жидкости по трубам ей приходится затрачивать энергию на преодоление сил внешнего и внутреннего трения. В прямых участках труб эти силы сопротивления действуют по всей длине потока и общая потеря энергии на их преодоление прямо пропорциональна длине трубы.

Такие сопротивления называются линейными.

Их величина (потеря давления) зависит от плотности и вязкости жидкости, а также от диаметра трубы (чем меньше диаметр, тем больше сопротивление), скорости течения (увеличение скорости увеличивает потери) и чистоты внутренней поверхности трубы (чем больше шероховатость стенок, тем больше сопротивление).

Кроме трения в прямых участках, в трубопроводах встречаются дополнительные сопротивления в виде поворотов потока, изменений сечения, кранов, ответвлений и т. п.

В этих случаях структура потока нарушается и его энергия затрачивается на перестроение, завихрения, удары. Такие сопротивления называют местными.

Линейные и местные сопротивления являются двумя разновидностями так называемых гидравлических сопротивлений, определение которых составляет основу расчета любых гидравлических систем.

Режимы течения жидкости.. В практике наблюдаются два характерных режима течения жидкостей: ламинарный и турбулентный.

При ламинарном режиме элементарные струйки потока текут параллельно, не перемешиваясь. Если в такой поток ввести струйку окрашенной жидкости, то она будет продолжать свое течение в виде тонкой нити среди потока неокрашенной жидкости, не размываясь. Такой режим течения возможен при очень малых скоростях потока.

С увеличением скорости выше определенного предела течение становится турбулентным, вихреобразным, при котором жидкость в пределах поперечного сечения трубопровода интенсивно перемешивается.

При постепенном увеличении скорости окрашенная струйка в потоке сначала начинает колебаться относительно своей оси, затем в ней появляются разрывы из-за перемешивания с другими струями и затем вследствие этого весь поток получает равномерную окраску.

Наличие того или иного режима течения зависит от величины отношения кинетической энергии потока 1 1

(■п-гпи2=ч-рУи2) к работе сил внут-реннего трения (/7 = р„5^/)-см. (2.9).

Это безразмерное отношение

^-pVv21 (р,5^/) можно упростить имея в виду, что Ды пропорционально V. Величины 1 и А/г также имеют одну и ту же размерность, и их можно сократить, а отношение объема V к поперечному сечению 5 является линейным размером й.

Тогда отношение кинетической энергии к работе сил внутреннего трения с точностью до постоянных множителей можно характеризовать безразмерным комплексом:

который называется числом (или критерием) Рейнольдса в честь английского физика Осборна Рейнольдса, в конце прошлого века экспериментально наблюдавшего наличие двух режимов течения.

Малые значения чисел Рейнольдса свидетельствуют о преобладании работы сил внутреннего трения в потоке жидкости и соответствуют ламинарному течению.

Большие значения Йе соответствуют преобладанию кинетической энергии и турбулентному режиму течения.

Граница начала перехода одного режима в другой — критическое число Рейнольдса — составляет 1?екр = 2300 для круглых труб (в качестве характерного размера принимается диаметр трубы).

В технике, в том числе и тепловозной, в гидравлических (в том числе воздушных и газовых) системах обычно имеет место турбулентное течение жидкостей. Ламинарный режим бывает лишь у вязких жидкостей (например, масло) при малых скоростях течения и в тонких каналах (плоские трубки радиатора).

где X («лямбда») — коэффициент линейного сопротивления, зависящий от числа Рейнольдса. Для ламинарного потока в круглой трубе Я, = 64/Ие (зависит от скорости), для турбулентных потоков величина к мало зависит от скорости и, главным образом, определяется шероховатостью стенок труб.

Местные потери напора также считаются пропорциональными квадрату скорости и определяются так:

где £ («дзета») — коэффициент местного сопротивления, зависящий от типа сопротивления (поворот, расширение и т. п.) и от его геометрических характеристик.

Коэффициенты местного сопротивления устанавливаются опытным путем, их значения приводятся в справочниках.

Понятие о расчете гидравлических систем. При расчете любой гидравлической системы решается обычно одна из двух задач: определение необходимого перепада давлений (напора) для пропуска данного расхода жидкости или определение расхода жидкости в системе при заданном перепаде давлений.

В любом случае должна быть определена полная потеря напора в системе АН, которая равна сумме сопротивлений всех участков системы, т. е. сумме линейных сопротивлений' всех прямых участков трубопроводов и местных сопротивлений других элементов системы:

Если во всех участках трубопровода средняя скорость течения одинакова, уравнение (2.33) упрощается:

Обычно в системе имеются участки, скорости течения в которых отличаются друг от друга. В этом случае удобно привести уравнение (2.33) к другой форме, учитывая что расход жидкости постоянен для всех элементов системы (без ответвлений). Подставив в условие (2.33) значения и = С}/5, получим

гидравлическая характеристика, или общий коэффициент сопротивления системы.

Необходимо иметь в виду, что расчет трубопроводов не является решением задачи с одним определенным ответом. Его результаты зависят от выбора величины диаметров участков трубопровода или скоростей в них.

Действительно, можно принять в расчете невысокие значения скоростей и получить небольшие потери напора. Но тогда при заданном расходе сечения трубопроводов (диаметры) должны быть большими, система будет громоздкой и тяжелой.

Приняв высокие скорости течения в трубах, мы уменьшим их поперечные размеры, но при этом существенно (пропорционально квадрату скорости) возрастут потери напора и затраты энергии на работу системы.

Поэтому при расчетах обычно задаются какими-то средними, «оптимальными», значениями скоростей течения жидкости. Для водяных систем оптимальная скорость имеет порядок примерно 1 м/с, для воздушных систем низкого давления — 8- 12 м/с.

Гидравлический удар представляет собой явление, происходящее в потоке жидкости при быстром изменении скорости его течения (например, при резком закрытии задвижки в трубопроводе или остановке насоса).

В этом случае кинетическая энергия потока мгновенно переходит в потенциальную энергию и давление потока перед задвижкой резко возрастает.

Область повышенного давления затем распространяется от задвижки в сторону еще не заторможенного полностью потока со скоростью, близкой к скорости звука а в этой среде.

Резкое повышение давления приводит если не к разрушению, то к упругой деформации элементов трубопровода, что уменьшает силу удара, но усиливает колебания давления жидкости в трубе.

Величина скачка давления при полной остановке потока жидкости, имевшего скорость v, определяется по формуле выдающегося русского ученого — профессора Н. Е. Жуковского, полученной им в 1898 г.

: Др = раа, где р — плотность жидкости.

С целью предотвращения ударных явлений в крупных гидравлических системах (например, водопроводных сетях) запорные устройства выполняют так, чтобы их закрытие происходило постепенно.

⇐ | Гидродинамика | | Тепловозы: Основы теории и конструкция | | Насосы и вентиляторы | ⇒

Ссылка на основную публикацию
Adblock
detector